Estimating synonymous and nonsynonymous substitution rates.

نویسنده

  • S V Muse
چکیده

Partitioning the total substitution rate into synnonymous and nonsynonymous components is a key aspect of many analyses in molecular evolution. Numerous methods exist for estimating these rates. However, until recently none of the estimation procedures were based on a sound statistical footing. In this paper, the evolutionary model of Muse and Gaut (1994) is used as the basis for two sets of parameters quantifying silent and replacement substitution rates. The parameters are shown to be equal when the four nucleotides are equally frequent and unequal otherwise. Maximum-likelihood estimation of these parameters is described, and the performance of these estimates is compared to that of existing estimation procedures. It is shown that the estimates of Nei and Gojobori (1986) are not unbiased for either set of parameters, although they provide very good estimates for one set as long as sequence divergence is not too high. However, some disturbing properties are found for the Nei and Gojobori estimates. In particular, it is shown that the expected value of the Nei and Gojobori estimate of silent substitution rate is a function of both the silent and replacement substitution rates. The maximum-likelihood estimates have no such problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating absolute rates of synonymous and nonsynonymous nucleotide substitution in order to characterize natural selection and date species divergences.

The rate of molecular evolution can vary among lineages. Sources of this variation have differential effects on synonymous and nonsynonymous substitution rates. Changes in effective population size or patterns of natural selection will mainly alter nonsynonymous substitution rates. Changes in generation length or mutation rates are likely to have an impact on both synonymous and nonsynonymous s...

متن کامل

A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome.

A model of DNA sequence evolution applicable to coding regions is presented. This represents the first evolutionary model that accounts for dependencies among nucleotides within a codon. The model uses the codon, as opposed to the nucleotide, as the unit of evolution, and is parameterized in terms of synonymous and nonsynonymous nucleotide substitution rates. One of the model's advantages over ...

متن کامل

Patterns of nucleotide substitution among simultaneously duplicated gene pairs in Arabidopsis thaliana.

We characterized rates and patterns of synonymous and nonsynonymous substitution in 242 duplicated gene pairs on chromosomes 2 and 4 of Arabidopsis thaliana. Based on their collinear order along the two chromosomes, the gene pairs were likely duplicated contemporaneously, and therefore comparison of genetic distances among gene pairs provides insights into the distribution of nucleotide substit...

متن کامل

Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models.

Approximate methods for estimating the numbers of synonymous and nonsynonymous substitutions between two DNA sequences involve three steps: counting of synonymous and nonsynonymous sites in the two sequences, counting of synonymous and nonsynonymous differences between the two sequences, and correcting for multiple substitutions at the same site. We examine complexities involved in those steps ...

متن کامل

Rates of nucleotide substitution and mammalian nuclear gene evolution. Approximate and maximum-likelihood methods lead to different conclusions.

Rates and patterns of synonymous and nonsynonymous substitutions have important implications for the origin and maintenance of mammalian isochores and the effectiveness of selection at synonymous sites. Previous studies of mammalian nuclear genes largely employed approximate methods to estimate rates of nonsynonymous and synonymous substitutions. Because these methods did not account for major ...

متن کامل

Not so different after all: a comparison of methods for detecting amino acid sites under selection.

We consider three approaches for estimating the rates of nonsynonymous and synonymous changes at each site in a sequence alignment in order to identify sites under positive or negative selection: (1) a suite of fast likelihood-based "counting methods" that employ either a single most likely ancestral reconstruction, weighting across all possible ancestral reconstructions, or sampling from ances...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 1996